Characteristics of (—)-[3H]-dihydroalprenolol binding to etaadrenoceptors on rat lung membranes

D.B. BARNETT, S.R. NAHORSKI & ELIZABETH L. RUGG

Department of Pharmacology and Therapeutics, School of Medicine, University of Leicester, Leicester, LE1 7RH, U.K.

Much progress has been made in the identification and characteristics of the β -adrenoceptor by the use of binding studies with radiolabelled β -adrenoceptor antagonists (for review see Lefkowitz, Limbird, Mukherjee & Caron, 1976). In the present communication detailed binding characteristics of (-)-[3H]-dihydroalprenolol ([3H]-DHA) to rat lung membranes are described in an attempt to understand was rapid $(T_{\frac{1}{2}} ass. = 4-5 min)$ and reversible $(T_{\frac{1}{2}} \text{ diss.} = 10-15 \text{ min})$ at room temperature. The binding was also clearly saturable having a B max of 0.48 p mol/mg protein and a K_D of 0.5 nM. No cooperative interactions between the binding sites could be detected (slope of Hill plot = 1.1).

The data in Table 1 indicates that the binding of [3H]-DHA was clearly stereoselective since (-)propranolol was about 100 times more potent than (+)-propranolol in its ability to displace [3H]-DHA from the membrane sites. Moreover, the relative potencies of a number of antagonists suggests that the receptors in rat lung are predominantly of the β_2 subtype. For example, H35/25 (1-(4-methylphenyl)-2isopropylamine-propanol), a relatively specific β_2 antagonist, more potently inhibited [3H]-DHA binding than (\pm) -atenolol and (\pm) -practolol $(\beta_1$ -antagonists). However, detailed analysis of the displacement curves of (\pm) -atenolol and (\pm) -practolol using Hill plots suggests that a small proportion (20-25%) of the

Inhibition of [${}^{3}H$]-DHA binding to rat lung membranes by β -adrenoceptor antagonists and agonists Table 1

Compound	K _i (M)
(—)-Propranolol	$4.1 \pm 0.7 \times 10^{-10}$
(—)-Timolol	5.0 ± 0.8 × 10 ⁻¹⁰
(+)-Propranolol	$3.1 \pm 0.7 \times 10^{-8}$
(±) H35/25	$4.5 \pm 0.5 \times 10^{-7}$
(±)-Atenolol	$5.1 \pm 2.5 \times 10^{-8}$
(±)-Practolol	$1.6\pm0.5\times10^{-8}$
(-)-Isoprenaline	$2.8 \pm 1.0 \times 10^{-7}$
(—)-Adrenaline	$0.9 \pm 1.0 \times 10^{-6}$
(±)-Salbutamol	$1.2 \pm 0.1 \times 10^{-6}$
(-)-Noradrenaline	$4.9 \pm 0.5 \times 10^{-6}$

Compounds were incubated at various concentrations with lung membranes (100-200 µg protein) and [3H]-DHA (0.7-1.5 nm) at room temperature for 30 min in a final volume of 250 μl. Samples were then rapidly vacuum filtered over glass fibre filters and the membrane-bound radioactivity retained by the filters was determined by liquid scintillation counting. IC₅₀ values were calculated from the percentage inhibition of [3H]-DHA binding using Hill plots. The K_i was then calculated from the equation $K_i = IC_{so}(1 + [S]/K_D)$ where [S] is the concentration of [3H]-DHA used in the assay and $K_D = 0.5$ nm. All results are expressed as mean \pm s.e. from a minimum of 3 experiments on different groups of rat lung membranes.

the nature and control of cell surface β -adrenoceptors in this tissue.

Lung parenchymal tissue (excluding major bronchi) was removed from male Wistar rats (120-150 g) and following homogenization and differential centrifugation the resulting membranes were used in the binding assay. The specific binding of [3H]-DHA (binding that could be displaced by 200 μ M (-)-isoprenaline) represented 85-95% of the total binding and receptor sites may have β_1 characteristics. Identification of the cell type possessing β_2 and/or β_1 adrenoceptors remains to be established.

Reference

LEFKOWITZ, R.J., LIMBIRD, L.E., MUKHERJEE, C. & CARON, M.C. (1976). The β -adrenergic receptor and adenylate cyclase. Biochim. Biophys. Acta, 457, 1-39.